Draft Report 2/19/2003 # Preliminary conclusions regarding the updated status of listed ESUs of West Coast salmon and steelhead West Coast Salmon Biological Review Team Northwest Fisheries Science Center 2725 Montlake Boulevard East Seattle, WA 98112 Southwest Fisheries Science Center Santa Cruz Laboratory 110 Shaffer Road Santa Cruz, CA 95060 # February 2003 Co-manager review draft [This is a draft document being provided to state, tribal, and federal comanagers for technical review.] # Preliminary conclusions regarding the updated status of listed ESUs of West Coast salmon and steelhead ## A. Chinook salmon February 2003 Co-manager review draft This section deals specifically with chinook salmon It is part of a larger report, the remaining sections of which can be accessed from the same website used to access this section (http://www.nwfsc.noaa.gov/). The main body of the report (Background and Introduction) contains background information and a description of the methods used in the risk analyses. ## A. CHINOOK ### A.1 BACKGROUND AND HISTORY OF LISTINGS Chinook salmon (Oncorhynchus tshawytscha Walbaum), also commonly referred to as king, spring, quinnat, Sacramento, California, or tyee salmon, is the largest of the Pacific salmon (Myers et al. 1998). The species historically ranged from the Ventura River in California to Point Hope, AK in North America, and in northeastern Asia from Hokkaido, Japan to the Anadyr River in Russia (Healey 1991). Additionally, chinook salmon have been reported in the Mackenzie River area of Northern Canada (McPhail and Lindsey 1970). Of the Pacific salmon, chinook salmon exhibit arguably the most diverse and complex life history strategies Healey (1986) described 16 age categories for chinook salmon, seven total ages with three possible freshwater ages. This level of complexity is roughly comparable to sockeye salmon (O. nerka), although sockeye salmon have a more extended freshwater residence period and utilize different freshwater habitats (Miller and Brannon 1982, Burgner 1991). Two generalized freshwater lifehistory types were initially described by Gilbert (1912): "stream-type" chinook salmon reside in freshwater for a year or more following emergence, whereas "ocean-type" chinook salmon migrate to the ocean predominately within their first year. Healey (1983, 1991) has promoted the use of broader definitions for "ocean-type" and "stream-type" to describe two distinct races of chinook salmon. This racial approach incorporates life history traits, geographic distribution, and genetic differentiation and provides a valuable frame of reference for comparisons of chinook salmon populations. For this reason, the BRT has adopted the broader "racial" definitions of ocean- and stream-type for this review. Of the two life history types, ocean-type chinook salmon exhibit the most varied and plastic life history trajectories. Ocean-type chinook salmon juveniles emigrate to the ocean as fry, subyearling juveniles (during their first spring or fall), or as yearling juveniles (during their second spring), depending on environmental conditions. Ocean-type chinook salmon also undertake distinct, coastally oriented, ocean migrations. The timing of the return to freshwater and spawning is closely related to the ecological characteristics of a population's spawning habitat. Five different run times are expressed by different ocean-type chinook salmon populations: spring, summer, fall, late-fall, and winter. In general, early run times (spring and summer) are exhibited by populations that use high spring flows to access headwater or interior regions. Ocean-type populations within a basin that express different runs times appear to have evolved from a common source population. Stream-type populations appear to be nearly obligate yearling outmigrants (some 2-year-old smolts have been identified), they undertake extensive off-shore ocean migrations, and generally return to freshwater as spring- or summerrun fish. Stream-type populations are found in northern British Columbia and Alaska, and in the headwater regions of the Fraser River and Columbia River interior tributaries. Prior to development of the ESU policy (Waples 1991), the NMFS recognized Sacramento River winter chinook salmon as a "distinct population segment" under the ESA (NMFS 1987). Subsequently, in reviewing the biological and ecological information concerning West Coast chinook salmon, Biological Review Teams (BRTs) have identified additional ESUs for chinook salmon from Washington, Oregon, and California: Snake River fall-run (Waples et al. 1991), Snake River spring- and summer-run (Matthews and Waples 1991), and Upper Columbia River summer- and fall-run chinook salmon (originally designated as the mid-Columbia River summer- and fall-run chinook salmon, Waknitz et al. 1995), Puget Sound chinook salmon, Washington Coast chinook salmon, Lower Columbia River chinook salmon, Upper Willamette River chinook salmon, Middle Columbia River spring-run chinook salmon, Upper Columbia River spring-run chinook salmon, Oregon Coast chinook salmon, Upper Klamath and Trinity rivers chinook salmon, Central Valley fall and late-fall-run chinook salmon, and Central Valley spring-run chinook salmon (Myers et al. 1998), the Southern Oregon and Northern California chinook salmon, California Coastal chinook salmon, and Deschutes River (NMFS 1999). Of the 17 chinook salmon ESUs identified by the NMFS, eight are not listed under the United States ESA, seven are listed as threatened (Snake River spring- and summer-run chinook salmon, and Snake River fall-run chinook salmon [Federal Register, Vol. 57, No. 78, April 22, 1992, p. 14653]; Puget Sound chinook salmon, Lower Columbia River chinook salmon, and Upper Willamette River chinook salmon [Federal Register, Vol. 64, No. 56, March 24, 1999, p. 14308]; Central Valley fall-run, and California Coastal chinook salmon [Federal Register, Vol. 64, No. 179, September 16, 1999, p. 5039]), and two are listed as endangered (Sacramento River winter-run chinook salmon [Federal Register, Vol. 59, No. 2, January 4, 1994, p. 440], and Upper Columbia River spring-run chinook salmon [Federal Register, Vol. 64, No. 56, March 24, 1999, p. 14308]). The NMFS convened a BRT to update the status of listed chinook salmon ESUs in Washington, Oregon, California, and Idaho. The chinook salmon BRT¹ met in January of 2003 in Seattle, WA to review updated information on each of the ESUs under consideration. ⁻ ¹ The Biological Review Team (BRT) for the updated chinook salmon status review included, from the NMFS Northwest Fisheries Science Center: Thomas Cooney, Dr. Robert Iwamoto, Dr. Robert Kope, Gene Matthews, Dr. Paul McElhaney, Dr. James Myers, Dr. Mary Ruckelshaus, Dr. Thomas Wainwright, Dr. Robin Waples, and Dr. John Williams; from the NMFS Southwest Fisheries Science Center: Dr. Peter Adams, Dr. Eric Bjorkstedt, and Dr. Steve Lindley; from the NMFS Alaska Fisheries Science Center (Auke Bay Laboratory): Alex Wertheimer; and from the USGS Biological Resource Division: Dr. Reginald Reisenbichler. ### A.2.7 CALIFORNIA COASTAL CHINOOK #### A.2.7.1 Previous BRT Conclusions The status of chinook salmon throughout California and the Pacific Northwest was formally assessed in 1998 (Myers, et al. 1998). Substantial scientific disagreement about the biological data and its interpretation persisted for some Evolutionarily Significant Units (ESUs); these ESUs were reconsidered in a subsequent status review update (NMFS 1999). Information from those reviews regarding ESU structure, analysis of extinction risk, risk factors, and hatchery influences is summarized in the following sections. #### **ESU** structure The initial status review proposed a single ESU of chinook salmon inhabiting coastal basins south of Cape Blanco and the tributaries to the Klamath River downstream of its confluence with the Trinity River (Myers et al 1998). Subsequent review of an augmented genetic data set and further consideration of ecological and environmental information led to the division of the originally proposed ESU into the Southern Oregon and Northern California Coastal Chinook Salmon ESU and the California Coastal Chinook Salmon ESU (NMFS 1999). The California Coastal Chinook Salmon ESU currently includes chinook salmon from Redwood Creek to the Russian River (inclusive). ## Summary of risk factors and status The California Coastal Chinook Salmon ESU is listed as Threatened. Primary causes for concern were low abundance, reduced distribution (particularly in the southern portion of the ESU's range), and generally negative trends in abundance; all of these concerns were especially strong for spring-run chinook salmon in this ESU (Myers et al. 1998). Data for this ESU are sparse and, in general of limited quality, which contributes to substantial uncertainty in estimates of abundance and distribution. Degradation of the genetic integrity of the ESU was considered to be of minor concern and to present less risk for this ESU than for other ESUs. Previous reviews of conservation status for chinook salmon in this area exist. Nehlsen et al. (1991) identified three putative populations (Humboldt Bay Tributaries, Mattole River, and Russian River) as being at high risk of extinction and three other populations (Redwood Creek, Mad River, and Lower Eel River) as being at moderate risk of extinction. Higgins et al. (1992) identified seven "stocks of concern," of which two populations (tributaries to Humboldt Bay and the Mattole River) were considered to be at high risk of extinction. Some reviewers indicate that chinook salmon native to the Russian River have been extirpated. Historical estimates of escapement are presented in Table A.2.7.1. These estimates are based on professional opinion and evaluation of habitat conditions, and thus do not represent rigorous estimates based on field sampling. Historical time series of counts of upstream migrating adults are available for Benbow Dam (South Fork Eel River; 1938-1975), Sweasy Dam (Mad River; 1938-1964), and Cape Horn Dam (Van Arsdale Fish Station, Eel River); the Table A.2.7.1. Historical estimates of abundance of chinook salmon in the California Coastal Chinook Salmon ESU. | Selected Watersheds | CDFG
1965 | Wahle &
Pearson 1987 | |---------------------------------------|--------------|-------------------------| | Redwood Creek | 5,000 | 1,000 | | Mad River | 5,000 | 1,000 | | Eel River | 55,000 | 17,000 | | Mainstem Eel ¹ | 13,000 | | | Van Duzen River ¹ | 2,500 | | | Middle Fork Eel ¹ | 13,000 | | | South Fork Eel ¹ | 27,000 | | | Bear River | | 100 | | Small Humboldt County
Rivers | 1,500 | | | Miscellaneous Rivers North of Mattole | | 600 | | Mattole River | 5,000 | 1,000 | | Noyo River | 50 | | | Russian River | 500 | 50 | | Total | 72,550 | 20,750 | ¹Entries for subbasins of the Eel River Basin are not included separately in the total. latter represent a small, unknown and presumably variable fraction of the total run to the Eel River. Data from cursory, nonsystematic stream surveys of two tributaries to the Eel River (Tomki and Sprowl Creeks) and one tributary to the Mad River (Canon Creek) were also available; these data provide crude indices of abundance. Previous status reviews considered the following to pose significant risks to the California Coastal Chinook Salmon ESU: degradation of freshwater habitats due to a variety of agricultural and forestry practices, water diversions, urbanization, mining, and severe recent flood events (exacerbated by land use practices). Special concern was noted regarding the more precipitous declines in distribution and abundance in spring-run chinook salmon. Many of these factors are particularly acute in the southern portion of the ESU range and were compounded by uncertainty stemming from the general lack of population monitoring in California (Myers et al. 1998). In previous status reviews, the effects of hatcheries and transplants on the genetic integrity of the ESU elicited less concern than other risk factors for this ESU, and were less of a concern for this ESU in comparison to other ESUs. #### Listing status The California Coastal Chinook Salmon ESU is currently listed as "Threatened." ## A.2.7.2 New Data and Analysis The Technical Recovery Team for the North-Central California Coast Recovery Domain has proposed a set of plausible hypotheses, based largely on geography, regarding the population structure of the California Coast Chinook Salmon ESU (Table A.2.7.2), but has concluded that insufficient information exists to discriminate among these hypotheses (NCCC-TRT, *in preparation*). Data are not available for all of the potential populations; only those for which data are available are considered below. New or updated time series for chinook salmon in this ESU include (1) counts of adults reaching Van Arsdale Fish Station near the effective headwater terminus of the Eel River; (2) cursory, quasi-systematic spawner surveys on Canon Creek (tributary to the Mad River), Tomki Creek (tributary to the Eel River), and Sprowl Creek (tributary to the Eel River); (3) counts of returning spawners at a weir on Freshwater Creek (tributary to Table A.2.7.2. Plausible hypotheses for independent populations considered by the North Central California Coast Technical Recovery Team. This information is summarized from a working draft report, and should be considered as preliminary and subject to revision. | t, and should be considered as premimary and subject to revision: | | | | | | |-------------------------------------------------------------------|-----------------------|--|--|--|--| | "Lumped" | "Split" | | | | | | Redwood Creek | | | | | | | Mad River | | | | | | | Humboldt Bay Tributaries | | | | | | | Eel River ¹ | | | | | | | | South Fork Eel River | | | | | | | Van Duzen River | | | | | | | Middle Fork Eel River | | | | | | | North Fork Eel River | | | | | | | Upper Eel River | | | | | | Bear River | | | | | | | Mattole River | | | | | | | Tenmile to Gualala ² | | | | | | | Russian River | | | | | | ¹Plausible hypotheses regarding the population structure of chinook salmon in the Eel River basin include scenarios ranging from five independent populations (South Fork Eel River, Van Duzen River, Upper Eel River, Middle Fork Eel River, and North Fork Eel River) to a single, strongly structured independent population. ²This stretch of the coast comprises numerous smaller basins that drain directly into the Pacific Ocean, some of which appear sufficiently large to support independent populations of chinook salmon. The following hypotheses span much of the range of plausible scenarios: (1) independent populations exist in all basins that exceed a minimum size; (2) independent populations exist only in basins between the Tenmile River and Big River, inclusive, that exceed a minimum size; (3) chinook salmon inhabiting basins along this stretch of coastline exhibit patchy population or metapopulation dynamics in which the occupancy of any given basin is dependent on migrants from other basins, and possibly from larger basins to the north and south; and (4) chinook salmon inhabiting basins between the Tenmile River and Big River, inclusive, exhibit patchy population or metapopulation dynamics in which the occupancy of any given basin is dependent on migrants from other basins in this region and possibly to the north while other basins to the south only sporadically harbor chinook salmon. | Table A.2.7.3. Geometric means | , estimated lambda, | , and long- an | nd short-term t | rends for abunda | nce time | |--------------------------------|---------------------|----------------|-----------------|------------------|----------| | series in the California Co. | astal Chinook Salm | on ESU | | | | | | 5 year Geometric Mean | | ric Mean | Mean Trend | | | |------------------|-----------------------|-----|----------|-------------------|-------------------|--| | | Rec | Min | Max | Long | Short | | | Freshwater Creek | 22 | 13 | 22 | 0.137 | 0.137 | | | | | | | (-0.405, 0.678) | (-0.405, 0.678) | | | Mad River | | | | | | | | Canon Creek | 73 19 | 10 | 103 | 0.0102 | 0.155 | | | | | 19 | | (-0.106, 0.127) | (-0.069, 0.379) | | | Eel River | | | | | | | | Sprowl Creek | 43 43 | 497 | -0.096 | -0.183 | | | | | | 43 | 497 | (-0.157, -0.0336) | (-0.356, -0.0096) | | | Tomki Creek | 61 13 | 12 | 2,233 | -0.199 | 0.294 | | | | | 13 | | (-0.351, -0.0464) | (0.0547, 0.533) | | Humboldt Bay). None of these time series is especially suitable for analysis of trends or estimation of population growth rates. For this reason, we have presented the data graphically, and restricted analysis to estimation of long- and short-term trends, rather than pursue more sophisticated analysis. Freshwater Creek—Counts of chinook salmon passing the weir near the mouth of Freshwater Creek, a tributary to Humboldt Bay, provide a proper census of a small (N ~ 20) population of naturally and hatchery-spawned chinook (Figure A.2.7.1). Chinook salmon occupying this watershed may be part of a larger "population" that uses tributaries of Humboldt Bay (NCCC-TRT, *in preparation*). The time series comprises only 8 years of observations, which is too few to draw strong inferences regarding trends. Clearly, the trend is positive, although the role of hatchery production in producing this signal may be significant (Table A.2.7.3; Figure A.2.7.1) Mad River—Data for naturally spawning fish are available from spawner surveys on Canon Creek, and to a lesser extent on the North Fork Mad River. Only the counts from Canon Creek extend continuously to the present (Figure A.2.7.2a). Due to high variability in these counts, short-term and long-term trends do not differ significantly from zero, although the tendency is towards a positive trend. Due to a hypothesized, but unquantified, effect of interannual variation in water availability on distribution of spawners in the basin, it is not clear whether these data provide any useful information for the population as a whole; however, more sporadic counts from the mainstem Mad River suggest that the estimates from Canon Creek capture gross signals, and support the hypothesis of a recent positive trend in abundance (Figure A.2.7.2b). **Eel River**—The Eel River plausibly harbors anywhere from one to five independent populations (NCCC-TRT, *in preparation*, Table A.2.7.2). Three current time series provide information for the population(s) that occupy this basin: (1) counts of adults reaching Van Arsdale Fish Station near the effective headwater terminus of the Eel River (Figure A.2.7.3a); (2) spawner surveys on Sprowl Creek (tributary to the Eel River) (Figure A.2.7.3b); and (3) spawner surveys on Tomki Creek (tributary to the Eel River) (Figure Figure A.2.7.1. Counts of chinook salmon at the weir on Freshwater Creek. Figure A.2.7.2. Abundance time series for chinook salmon in portions of the Mad River basin. (a) spawner counts on Canon Creek; and (b) spawner counts on portions of the mainstem Mad River. Figure A.2.7.3. Abundance time series for chinook salmon in portions of the Eel River basin. (a) counts of chinook salmon at Van Arsdale Fish Station at the upstream terminus of anadromous access on the mainstem Eel River; (b) estimates of spawner abundance based on spawner surveys and additional data from Sprowl Creek; and (c) estimates of spawner abundance based on spawner surveys and additional data from Tomki Creek. A.2.7.3c). These data are not especially suited to rigorous analysis of population status for a number of reasons, and sophisticated analyses were not pursued. Inferences regarding population status drawn from the time series of counts of adult chinook salmon reaching Van Arsdale Fish Station (VAFS) are weakened by two characteristics of the data. First, adult salmon reaching VAFS include both naturally and hatchery spawned fish, yet the long-term contribution of hatchery production to the spawner population is unknown and may be quite variable due to sporadic operation of the egg-take and release programs since the mid-1970's. Second, and perhaps more importantly, it is not clear what counts of natural spawners at VAFS indicate about the population or populations of chinook salmon in the Eel River. As a weir count, measurement error is expected to be small for these counts. However, very little spawning habitat exists above VAFS, which sits just below the Cape Horn dam on the Eel River, which suggests that counts made at VAFS represent the upper edge of the spawners' distribution in the upper Eel River. Spawner access to VAFS and other headwater habitats in the Eel River basin is likely to depend strongly on the timing and persistence of suitable river flow, which suggests that a substantial component of the process error in these counts is not due to population dynamics. For these reasons, no statistical analysis of these data was pursued. Additional data for the Eel River population or populations are available from spawner surveys from Tomki and Sprowl Creeks, which yield estimates of abundance based on (1) quasi-systematic index site spawner surveys that incorporate mark-recapture of carcasses and (2) additional so-called "compatible" data from other surveys. Analysis for Sprowl Creek indicates negative long-term and short-term trends; similar analysis indicates a long-term decline and short-term increase for Tomki Creek (Table 3). Caution in interpreting these results is warranted, particularly given the quasi-systematic collection of these data, and the likelihood that these data include unquantified variability due to flow-related changes in spawners' use of mainstem and tributary habitats. In particular, inferences regarding population status based on extrapolations from these data to basin-wide estimates of abundance are expected to be weak and perhaps not warranted. Mattole River—Recent spawner and redd surveys on the Mattole River and tributaries have been conducted by the Mattole Salmon Group since 1994. The surveys provide useful information on the distribution of salmon and spawning activity throughout the basin. Local experts have used these and ancillary data to develop rough "index" estimates of spawner escapement to the Mattole; however, the intensity and coverage of these surveys has not been consistent, and the resulting data are not suitable for rigorous estimation of abundance (e.g., through area-under-the-curve analysis). Russian River—No long-term, continuous time series are available for sites in the Russian River basin, but sporadic estimates based on spawner surveys are available for some tributaries. Video-based counts of upstream migrating adult chinook salmon passing a temporary dam near Mirabel on the Russian River are available for 2000-2002. Counts are incomplete, due to technical difficulties with the video apparatus, occasional periods of poor water clarity, occasional overwhelming numbers of fish, and disparities between counting and migration periods; thus, these data represent a minimum count of adult chinook. Counts have exceeded 1,300 fish in each of the last three years (5,465 in 2002); and a rigorous mark-recapture estimate of outmigrant abundance in 2002 exceeded 200,000 (Shawn Chase, Sonoma County Water Agency, *personal communication*). Since chinook salmon have not been produced at the Don Clausen Hatchery since 1997, so these counts represent natural production or straying from other systems. No data were available to assess the genetic relationship of these fish to others in this or other ESUs. **Summary**—Historical and current information indicates that abundance in putatively independent populations of chinook salmon is depressed in many of those basins where they have been monitored. The relevance of recent strong returns to the Russian River to ESU status are not clear as the genetic composition of these fish is unknown. Reduction in geographic distribution, particularly for spring-run chinook salmon and for basins in the southern portion of the range, continues to present substantial risk. Genetic concerns are reviewed below (Hatchery Information). As for previous status reviews, uncertainty continues to contribute substantially to assessments of risk facing this ESU. ## A.2.7.3 Hatchery Information Hatchery stocks that are being considered for inclusion in this ESU are: (1) Mad River Hatchery, (2) hatchery activities of the Humboldt Fish Action Council on Freshwater Creek; (3) Yager Creek Hatchery operated by Pacific Lumber Company; (4) Redwood Creek Hatchery; (5) Hollow Tree Creek Hatchery; (6) Van Arsdale Fish Station; and (6) hatchery activities of the Mattole Salmon Group. Chinook salmon are no longer produced at the Don Clausen hatchery on Warm Springs Creek (Russian River). In general, hatchery programs in this ESU are not oriented towards large-scale production, but rather are small-scale operations oriented at supplementing depressed populations. **Freshwater Creek**—This hatchery is operated by Humboldt Fish Action Council and CDFG to supplement and restore natural production in Freshwater Creek. All spawners are from Freshwater Creek; juveniles are marked and hatchery fish are excluded from use as broodstock. Weir counts provide good estimates of the proportion of hatchery- and naturally produced fish returning to Freshwater Creek (30-70% hatchery from 1997-2001); the contribution of HFAC production to spawning runs in other streams tributary to Humboldt Bay is unknown. **Mad River**—Recent production from this hatchery has been based on small numbers of spawners returning to the hatchery. There are no estimates of naturally spawning chinook salmon abundance available for the Mad River to determine the contribution of hatchery production to chinook salmon in the basin as a whole. Broodstock has generally been drawn from chinook salmon returning to the Mad River; however, releases in the 1970s and 1980s have included substantial releases of fish from out-of-basin (Freshwater Creek) and out-of-ESU (Klamath-Trinity and Puget Sound). **Eel River**—Four hatcheries, none of which are major production hatcheries, contribute to production of chinook salmon in the Eel River Basin: hatcheries on Yager Creek (recent effort: ~12 females spawned per year), Redwood Creek (~12 females), Hollow Tree Creek, and the Van Arsdale Fish Station (VAFS) (~60 males and females spawned). At the first three hatcheries, broodstock is selected from adults of non-hatchery origin; at VAFS, broodstock includes both natural and hatchery origin fish. In all cases, however, insufficient data on naturally spawning chinook salmon are available to estimate the effect of hatchery fish on production or other characteristics of naturally spawning chinook salmon in the Eel River basin. Since 1996, all fish released from VAFS have been marked. Subsequent returns indicate that approximately 30% of the adult chinook salmon trapped at VAFS are of hatchery origin. It is not clear what these numbers indicate about hatchery contributions to the population of fish spawning below VAFS. **Mattole River**—The Mattole Salmon Group has operated a small hatchbox program since 1980 (current effort: ~40,000 eggs from ~10 females) to supplement and restore chinook salmon and other salmonids in the Mattole River. All fish are marked, but no rigorous estimate of hatchery contributions to adult escapement is possible. Hatchery-produced outmigrants comprised approximately 17.3% (weighted average) of outmigrants trapped during 1997, 1998 and 2000 (Mattole Salmon Group 2000, Five Year Management Plan for Salmon Stock Rescue Operations 2000-2001 through 2004-2005 Seasons). Trapping efforts did not fully span the period of natural outmigration so this figure may overerestimate the contribution of hatch-box production to total production in the basin. **Russian River**—Production of chinook salmon at the Don Clausen (Warm Springs Hatchery) ceased in 1997 and had been largely ineffective for a number of years prior to that. Recent returns of chinook salmon to the Russian River stem from natural production, and possibly from fish straying from other basins, including perhaps Central Valley stocks. #### **Summary** Artificial propagation of chinook salmon in this ESU remains at relatively low levels. No putatively independent populations of chinook salmon in this ESU appear to be entirely dominated by hatchery production, although proportions of hatchery fish can be quite high where natural escapement is small and hatchery production appears to be successful (e.g., Freshwater Creek). It is not clear whether current hatcheries pose a risk or offer a benefit to naturally spawning populations. Extant hatchery programs are operated under guidelines designed to minimize genetic risks associated with artificial propagation, and save for historical inputs to the Mad River Hatchery stock, do not appear to be at substantial risk of incorporating out-of-basin or out-of-ESU fish. Thus, it is likely that artificial propagation and degradation of genetic integrity continue do not represent a substantial conservation risk to the ESU. Categorizations of hatchery stocks in the California Coastal chinook ESU (SSHAG 2003) can be found in Appendix A.5.1. # A.2.7.4 Comparison with Previous Data Few new data, and few new datasets were available for consideration, and none of the recent data contradict the conclusions of previous status reviews. Chinook salmon in the Coastal California ESU continue to exhibit depressed population sizes relative to historical abundances; this is particularly true for spring-run chinook, which may no longer be extant anywhere within the range of the ESU. Evaluation of the significance of recent potential increases in abundance of chinook salmon in the Russian River must weigh the substantial uncertainty regarding the genetic relatedness of these fish to others in the northern part of the ESU. Harvest rates are not explicitly estimated for this ESU; however, it is likely that current restrictions on harvest of Klamath River fall chinook maintain low ocean harvest of chinook salmon from the California Coastal ESU (PFMC 2002a, b). Potential changes in age-structure of chinook salmon populations (e.g., Hankin et al. 1993) and associated risk has not been evaluated for this ESU. No information exists to suggest new risk factors, or substantial effective amelioration of risk factors noted in the previous status reviews save for recent changes in ocean conditions. Recent favorable ocean conditions have contributed to apparent increases in abundance and distribution for a number of anadromous salmonids, but the expected persistence of this trend is unclear.